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Abstract

Supplemental Materials associated to the article with the same title. Section I contains details

about the 2D Molecular Dynamics (MD) model used for the simulations. Section II shows similar

results as within the article for the temporal evolution of macroscopic variables and the spatial

distribution of non-affine deformation, related to another time interval of analysis and series of

stick-slip events. Sections III and IV address the intrinsic irregularity of the simulated stick-slip

dynamics, compared to the laboratory experiments. Finally, Section V contains a detailed expla-

nation of the animated movies that can be downloaded from the same repository and complement

the figures in the article and herein.
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I. DETAILS ABOUT THE 2D MD MODEL

The 2D Molecular Dynamics (MD) model was developed and implemented by the Open

Source code ESyS-Particle, ver. 2.0. ESyS-Particle is a software package for particle-based

numerical modelling. The software implements the Discrete Element Method (DEM), a type

of Molecular Dynamics technique widely used for modelling processes involving large defor-

mations, granular flow and/or fragmentation. ESyS-Particle is designed for execution on par-

allel supercomputers, clusters or multi-core PCs running a Linux-based Operative System.

ESyS-Particle has been under development at the Earth Systems Science Computational Centre,

University of Queensland, Brisbane, Australia, and at the RWTH Aachen University,

Aachen, Germany.

As dimensional units within the model we considered L0 = 150 µm, t0 = 1 s and M0 = 1

kg, respectively for length, time and mass. Each variable and parameter is thus expressed

in these units or combinations of them.

The driving block of the model (Fig. 1(a) of the article, top part) comprises a top layer

of uniform particles, each one with radius equal to 1. Below that 1D lattice there is a

layer of particles with size distribution within the range [0.3; 1.0]. All of these particles

interact among themselves via a pseudo-tensorial spring having a compressional/extensional

component, a shear one and finally a bending term. All of these components are expressed

as Hookean springs. For the formulation of the correspondent elastic forces we specifically

refer to Ref.1 and to the notation used therein. Having in mind Eq. 1 of Ref.1, the springs’

elastic constants have values

Kr =2.9775 · 107

Ks = 2.25 · 105

Kb = 2.79 · 105, (1)

respectively for the compressional/tensional spring, with radial/normal direction, passing

through the centers of the two interacting particles, the shear/tangential spring (orthogonal

to the radial direction) and the bending spring. Each resultant elastic bond can be broken

only when a certain condition is satisfied (see Eq. 11 of Ref.1). This condition depends upon

some threshold parameters, each of which is associated to a single type of spring. We set up

these threshold values such that no bond broke during each of our simulations.
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The substrate block (Fig. 1(a) of the article, bottom part) is the mirror image of the

driving block in respect of the horizontal axis passing through the center of the granular

layer. All of its particles have the same size distribution and properties of those of the drive

block.

The granular layer (Fig. 1(a) of the article, center part) is made of particles with size

distribution within the range [0.7; 1.1] = [105; 165] µm, approximately corresponding to

the same size range of the glass beads used as model fault gouge in the experiments by

Johnson et al. (see the “Methods” section of Ref.2 where the authors report a size range

of [105; 150] µm). The granular layer particles interact with each other only when they

get in contact with each other, meaning, they are not bonded. The contact force has

a radial/normal component simply given by the repulsive part of the same radial/normal

Hookean component of the bonding force. However, in this case the respective spring stiffness

constant has valueKr = 5.954·107. Each contact force has also a tangential component which

represents the inter-particle friction force. Its formulation is conceptually similar to the one

of Cundall et al.3 but implemented in a different way that allows to describe more accurately

the transition from static friction to dynamic friction4. This different implementation comes

at the cost of longer computational time.

In the specific case of our simulations the parameters associated to the frictional force

are

Ks =5.954 · 107

µs = 0.6

µd = 0.6, (2)

where Ks is the shear stiffness and µs/µd the static and dynamic friction coefficients, re-

spectively. The interaction between one particle of the granular layer and one particle of

the driving block or of the substrate block is described by the same contact/friction force

between two particles of the granular layer. Finally, an artificial viscous bulk force was ap-

plied to each particle of the model to avoid the build up of kinetic energy inside the system

due to its finite size along the vertical (Y -)axis.

The ESys-Particle MD code exploits a novel formulation for representing relative rota-

tions of bonded particles. This formulation decomposes the relative rotation between two

bonded particles into two sequence-independent rotations1. Thus, torques caused by rela-
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tive rotations are uniquely determined because overall torsional and rolling angles can be

distinguished. This formulation is based upon the use of quaternion algebra. It’s a formula-

tion that preserves the sequence-dependency of composed finite rotations and is numerically

more stable compared to standard incremental methods5,6.

Newton’s equations of motion for the center of mass of each particle are solved using

a velocity Verlet finite difference scheme while, for the correspondent rotational degrees

of freedom, with a finite difference rotational leapfrog algorithm6. The temporal finite

difference time step ∆t = 2.5 · 10−5 was small enough to guarantee numerical stability and

to satisfy the Sampling Theorem for a vibration signal with maximum frequency fmax = 20

kHz. This frequency value is indicatively the maximum sound frequency of vibration in the

experiments by Johnson et al.2.

The granular layer thickness in our model is approximately identical to the one in the

reference experimental configuration, i.e., approximately 3 mm.

The boundary conditions are periodic in X direction in order to approximate the simu-

lation of a granular layer with large aspect ratio in shear direction without the need of very

long computation time. In Y direction, the boundary conditions consist of a modified ver-

sion of the constant normal force/stress boundary condition adopted by Aharonov et al.7. A

similar implementation was used by Capozza et al. in their study of the effects of vibration

on granular stick-slip8. Each simulation run consists in a first consolidation stage, 10000

simulation time steps long, when no shear load is imposed. During this initial time interval,

the granular layer is simply compressed and dilated, displacing vertically both the top of the

driving block and the bottom of the substrate, under the condition of achieving a constant

normal load σn = 600 ≈ 4 MPa exerted by the granular layer on both the drive block and

the substrate. This condition always results in a transitory regime for the system’s thickness

in Y , during which it decreases approximately exponentially towards a steady state value.

This equilibrium value is always achieved well before the end of the consolidation stage,

guaranteering that the system is in complete steady state when the shear load starts to

be applied. At the end of the consolidation phase, the position of the substrate bottom is

recorded and kept fixed in time during every reference run and it is adopted as center value

about which the Y displacement is imposed during the perturbed runs. The top of the drive

block is still subject to the same constant normal load, all the time in each run, resulting

in small amplitude displacement fluctuations about the steady state value achieved during
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consolidation, as a consequence of dilation/compaction of both the granular layer and the

substrate/drive block. Shear load is imposed starting at the end of the consolidation stage,

initially with a linearly increasing speed till the wanted value VX,0 is achieved (piece-wise

linear ramp loading). This implementation of a constant normal stress in Y differs from

previous ones for the vertical symmetry break. While the effective normal stress on the

top of the drive block is constant, the one on the bottom of the subtrate fluctuates about

an average value corresponding to the wanted σn. The fluctuation amplitude remains rel-

atively small during each run, both reference and perturbed ones. For example, regarding

the time interval [1.45; 1.96] of Fig. 2 in the manuscript, the largest fluctuation amplitude

(peak-to-peak), relative to the average value σn, is
∆σmax

n,PP

σn

∼= 8.79% in the reference run and
∆σmax

n,PP

σn

∼= 8.49% in the perturbed one. Vibration only changes the phase of the fluctuations

but not the amplitude range.

We notice that some particles of the granular layer are squeezed out of their initial region

during the consolidation stage. The driving block/substrate do not fully extend up to the

lateral boundaries along Y , at the extremities of the system. As a consequence of periodic

boundary conditions in X and of consolidation, some granular particles are squeezed below

and above the line of the substrate/driving block and get trapped in between two sides

of each of them. These “columns” of particles can be clearly observed in Fig. 3 of the

manuscript and Fig. S2 here.

II. SIMULATION PHENOMENOLOGY FOR OTHER TIME INTERVALS OF

ANALYSIS AND STICK-SLIP CYCLES.

This Section contains additional results showing that the phenomenology observed for

the time interval and series of stick-slip cycles considered in the article is also observed

during other time intervals, for a larger number of successive stick-slip cycles, in absence or

presence of externally applied vibration.

One characterizing feature of the numerically simulated stick-slip dynamics consists in

a low degree of correlation between the friction coefficient drop, |∆µf |, and the thickness

change, |∆T |, during slip. This feature is qualitatively evident from Figs. 2(b)-(d) in the

article and from Figs. S1(b)-(d) below. For example, the slip event within the time interval

[1.46; 1.56] shown in Fig. 2(d) of the article happens with almost no thickness drop (no
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compaction), both for the reference and for the perturbed runs. The same is true for the

slip event within the time interval [10.06; 10.16] of Fig. S1(d), which is analogous to Fig.2(d)

of the article but refers to another time range. In both cases the figures refer to, it is possible

to notice that some slip events are accompanied by compaction, others are not and there is

a low level of correlation between the friction coefficient drop amplitude and the thickness

drop one.

The second main characteristic feature of the numerically simulated stick-slip dynamics

consists in the similarity of the patterns of temporal evolution for the non-affine deformation

metric M(r̄, t) defined within the article. Prior to slip M assumes small values almost

everywhere, homogeneously, across the granular layer, except for small and isolated regions

where it departs from 0 mainly due to single particles acting like rattlers. At the onset

of rapid slip, M undergoes a sudden increase in a very localized region of the top of the

granular layer, close to the drive block. Later on, M ’s localized peak values disappear and

non-affine deformation spreads more widely within the bulk of the granular layer, achieving

larger values than before the onset of slip. This type of pattern for the spatial-temporal

evolution of M during stick-slip is evident in Fig. 3 of the article and in Fig. S2 below.

Figure S2 refers to the same couple of reference/perturbed simulations Fig. S1 is associ-

ated with. The reference simulation is the same as the one described within the article. The

perturbed simulation consists in applying external vibration of the same type as described

within the article but during the time interval [10.06; 10.16]. It is important to remark that

vibration amplitude, frequency, duration and modulation are the same as cited in the ar-

ticle. Figures S2 (a), (c) and (e) refer to three different times during a stick-slip cycle of

the reference run. The symbols within each inset help to identify which friction coefficient

state the figures refers to (see Fig. S1 for comparison). These three figures show another

example of spatially localized increase of non-affine deformation during slip. Compared to

the stick-slip cycle analyzed in the article, in this case there are less rattlers, thus no visible

circular spots of slightly-above-average non-affine deformation during the stick period (Fig.

S2(a)). Non-affine deformation increases abruptly within two different and separated regions

of the shear zone (Fig. S2(c) and (e) respectively), at different times. Remarkedly, the two

highly non-affine spots corresponds to two different peak values for < M > (t) in Fig. S1(e).

Figures S2 (b), (d) and (f) refer to three different moments during the same stick-slip

phase when perturbed by vibration, applied during the time interval [10.06; 10.16]. They
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Figure S 1. Macroscopic signals for a couple of runs identical to the ones described in the article

except for the time interval when external vibration is used for the perturbed run, in this case

being [10.06; 10.16]. (a) Normalized driving block’s Center Of Mass (COM) velocity along the

shear direction (X-axis), ṼX . (b) Model’s thickness in Y , T . (c) Substrate’s bottom displacement

in Y direction, uy, for the perturbed run. (d) Friction coefficient of the interface between the

granular layer and the driving block. For the meaning of the symbols, see Fig.S2. (e) Granular

layer ensemble average of the non-affine deformation metric M . The vertical dashed lines in all

the insets outline the time interval of interest, when vibration is imposed. Black lines refer to

the reference run, in absence of vibration. Gray lines refer to the perturbed case, with applied

vibration. 7
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Figure S 2. Non-affine deformation metric map, M(r̄, t), at different times (see corresponding

identifying symbols in Fig. S1). Simulation runs where the externally applied vibration occurs

this within the interval [10.06; 10.16]. (a), (c), (e): reference run, without applied vibration. (b),

(d), (f): perturbed run, with applied vibration. Only granular layer particles are visualized. Each

of them is labeled with a color value corresponding to the local M value. See Section V for

corresponding animated movies showing the temporal evolution of M(r̄, t) during the time interval

[10.06; 10.16], for both the reference and perturbed runs.

confirm the similarity between a “spontaneous” slip and a dynamically triggered one, in

terms of evolution of the non-affine deformation pattern.

We performed other couples of simulations like this one, just varying the beginning time

of vibration application, and got results that confirm the phenomenology described in the

article and herein.
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III. REGULAR VS IRREGULAR STICK-SLIP DYNAMICS. COMPARISON

WITH LABORATORY EXPERIMENTS.

The irregularity that accompanies the numerically simulated stick-slip dynamics repre-

sents a key difference compared to the extreme regularity of the double-axial shear experi-

ment performed at Penn State University’s Rock and Sediment Mechanics Lab by Johnson

et al.2. One example of irregularity consists in the relation between the friction coefficient

drop ∆µf , associated with each slip event, and the corresponding change in thickness ∆T .

Figure S3 is the scatter plot of |∆µf | vs |∆T | for a lab experiment, in absence of applied

vibration. Figure S4 is a similar plot but for our simulated reference run, considering the

population of 150 identified slip events that are accompanied by compaction (∆T > 0). The

comparison of the two figures clearly shows that in the experimental case there is almost

linear correlation between the two variables (linear correlation coefficient R = 0.9419), i.e.,

large slip events (in terms of friction coefficient drop) occur with large compaction. The

simulated reference run exhibits a smaller degree of correlation.

In the experiment, the size of the slip event, still in terms of friction coefficient drop,

is almost constant, as shown in Fig. S5, reporting the probability that the friction coeffi-

cient drop, ∆µf , as a random variable, assumes values greater than or equal to ∆µ′

f . This

probability has been calculated using the catalog of 264 slip events identified in the exper-

imental dataset and it represents 1− the Cumulative Distribution Function of ∆µf . The

blue, dashed line corresponds to a maximum likelihood-based power law best fitting of part

of the curve according to the method of Clauset et al.9. The best fitting has been performed

for the range ∆µf ≥ 0.0974. The experimental dataset essentially contains only large size

slip events that follows a power law, i.e., Gutenberg-Richter-like, statistics.

In the simulation, the reference run exhibits a large range of slip friction coefficient

drops. Figure S6 shows the same type of probability for the friction coefficient drop, ∆µf ,

as a random variable, using this time as statistical ensemble the values determined from

the catalog of about 150 slip events happening with compaction. The dashed line still

corresponds to the same type of maximum likelihood-based power law best fitting of part of

the curve according to Ref.9. The maximu likelihood-based best fit shows that only the tail

of the distribution, consisting in large slip events, follows a power-law (Gutenberg-Richter-

like) behavior while smaller events are characterized by other statistical properties. This
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Figure S 3. Friction coefficient drop, |∆µf |, vs thickness change, |∆T/L0|, during slip, calculated

for a double-axial shear experiment in the absence of applied vibration. The experiment was a run

similar to the one described in Ref.2, with a normal load of 5 MPa. For this figure, we considered

a population of 264 slip events. The linear correlation coeffient between |∆µf | and |∆T | for this

dataset is R = 0.9419.

result stems from the larger degree of irregularity of stick-slip dynamics in our simulation,

compared to the experiments of Johnson et al.2, and is typical of both Earth and laboratory

catalogs of slip events10,11.

The difference between the experimental CDF and the simulation one is expected and

is in agreement with results from field observations12,13. Indeed, being almost completely

regular, the experimental stick-slip dynamics covers only a small range of slip friction drop

values. At this small friction drop scale, a power law-like Probability Density Function

can be approximately described by a log-normal one10,14, which leads to the type of CDF

shown in Fig. S5. On the contrary, the simulation stick-slip dynamics is more irregular

and involves a larger range of friction coefficient drop values, thus a more remarked power

law-like distribution.

One reason for this key difference between our numerical simulation and the experiments

consists in the fact that the experimental configuration was fine tuned in order to obtain a

high degree of regular stick-slip dynamics while we did not fine-tune as well the parameters

of our MD simulations. In this work, we wanted to achieve stick-slip behavior closer to the

field reality, in terms of variability11.
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Figure S 4. Friction coefficient drop, |∆µf |, vs thickness change, |∆T |, during slip, calculated

for the reference run out of a population of 150 slip events within the time interval [1; 25]. The

thickness change associated with a slip event was calculated as the thickness at the slip onset -

thickness at its end. The linear correlation coeffient between |∆µf | and |∆T | is R = 0.5109.
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Figure S 5. Probability that the friction coefficient drop, ∆µf , as a random variable, assumes

value greater than or equal to ∆µ′

f , using as statistical ensemble the values determined from the

experimental run catalog of about 264 slip events. The blue, dashed line corresponds to a maximum

likelihood-based power law best fitting of part of the curve according to the method of Clauset et

al.
9. The part of the dataset corresponding to a power law behavior, i.e., to a Gutenberg-Richter

like slip event distribution, is ∆µ′

f ≥ 0.0974.

IV. ANALYSIS OF SLIP EVENTS ACCOMPANIED BY NO COMPACTION.

The second source of difference with the experimental results about the (|∆µf | , |∆T |)

correlation is intrinsically due to one of the main features of our model, i.e., the use of

deformable drive/substrate blocks. We performed a detailed analysis of the particle rear-
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Figure S 6. Probability that the friction coefficient drop, ∆µf , as a random variable, assumes value

greater than or equal to ∆µ′

f , using as statistical ensemble the catalog of about 150 slip events

happening with compaction in the reference run. The dashed line corresponds to a maximum

likelihood-based power law best fitting of part of the curve according to the method of Clauset et

al.
9. The part of the dataset corresponding to a power law behavior, i.e., to a Gutenberg-Richter

like slip event distribution, is ∆µ′

f ≥ 0.075.

rangement during some of the slip events occuring without compaction. In this analysis, we

looked at animated movies of the particle assemblies during the slip events. These movies

show that limited parts of the granular layer and of the drive block undergo significant de-

formations during such slip events. Being the overall thickness of the system, T , calculated

by the lowest and highest drive block/substrate particle positions along the Y− axis, a slip

event may induce more local bending of the bonded particle assemblies and less rigid-body

vertical shift, thus producing almost no thickness change.

V. SPATIO-TEMPORAL EVOLUTION OF NON-AFFINE DEFORMATION: AN-

IMATED MOVIES.

The movie file ReferenceRun.avi refers to the reference simulation, the one without

applied vibration. This movie shows a series of frames, each one containing two insets. The

bottom inset contains the plot of the friction coefficient vs time, within the time interval

[1.46; 1.56]. For comparison, see Fig. 2(d) within the article. The square symbol moving

along the curve in the plot identifies the time instant and the corresponding friction coeffi-

cient value when a snapshot of the non-affine metric function M is shown in the top inset.
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These snapshots are analogous to the ones of Fig. 3 within the article. The two insets

allow for comparing the temporal evolution of the friction coefficient (macroscopic variable)

with the temporal evolution of the spatial distribution of the non-affine deformation level,

provided by M (mesoscopic variable).

The movie file PerturbedRun.avi is analogous to ReferenceRun.avi but it refers to

the perturbed simulation, the one with applied vibration within the time interval [1.46; 1.56].

The bottom inset shows the plot of the friction coefficient vs time (gray line) for the per-

turbed run along with the same plot for the reference run (black line). The M snapshots

(top inset) refer only to the perturbed run.

The movie files ReferenceRun2.avi and PerturbedRun2.avi are of the same type

as the previous two but refer to the case of vibration applied within the time interval

[10.06; 10.16]. See Fig. S1 for the corresponding temporal evolution of macroscopic variables

for this couple of simulations.

For every animated movie, the time gap between two consecutive frames corresponds

to 10 simulation time steps, i.e., 2.5 · 10−4. The frame rate of each movie is 7 fps. Each

movie was compressed by a JPEG encoder. Corresponding movies are available also in PNG

format at the the same Web page.
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